Advertisement

Advertisement

crunode

/ ˈkruːnəʊd /

noun

  1. a point at which two branches of a curve intersect, each branch having a distinct tangent; node
“Collins English Dictionary — Complete & Unabridged” 2012 Digital Edition © William Collins Sons & Co. Ltd. 1979, 1986 © HarperCollins Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009, 2012


Discover More

Word History and Origins

Origin of crunode1

C19: cru- from Latin crux cross + node
Discover More

Example Sentences

It will readily be understood how the like considerations apply to other cases,—for instance, if the line Ω is a tangent at an inflection, passes through a crunode, or touches one of the branches of a crunode, &c.; thus, if the line Ω passes through a crunode we have pairs of hyperbolic legs belonging to two parallel asymptotes.

As mentioned with regard to a branch generally, an infinite branch of any kind may have cusps, or, by cutting itself or another branch, may have or give rise to a crunode, &c.

Secondly, if two of the intersections coincide, say if the line infinity meets the curve in a onefold point and a twofold point, both of them real, then there is always one asymptote: the line infinity may at the twofold point touch the curve, and we have the parabolic hyperbolas; or the twofold point may be a singular point,—viz., a crunode giving the hyperbolisms of the hyperbola; an acnode, giving the hyperbolisms of the ellipse; or a cusp, giving the hyperbolisms of the parabola.

Thirdly, the three intersections by the line infinity may be coincident and real; or say we have a threefold point: this may be an inflection, a crunode or a cusp, that is, the line infinity may be a tangent at an inflection, and we have the divergent parabolas; a tangent at a crunode to one branch, and we have the trident curve; or lastly, a tangent at a cusp, and we have the cubical parabola.

Advertisement

Advertisement

Advertisement

Advertisement


crunkcruor